Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.771
Filtrar
1.
J Proteomics ; : 105177, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631426

RESUMO

Tuberculosis (TB) is a serious cause of infectious death worldwide. Recent studies have reported that about 30% of the Mtb proteome was modified post-translationally, indicating that their functions are essential for drug resistance, mycobacterial survival, and pathogenicity. Among them, lysine acetylation, reversibly regulated by acetyltransferase and deacetylase, has important roles involved in energy metabolism, cellular adaptation, and protein interactions. However, the substrate and biological functions of these two important regulatory enzymes remain unclear. Herein, we utilized the non-pathogenic M. smegmatis strain as a model and systematically investigated the dynamic proteome changes in response to the overexpressing of MsKat/MsCobB in mycobacteria. A total of 4179 proteins and 1236 acetylated sites were identified in our data. Further analysis of the dynamic changes involved in proteome and acetylome showed that MsKat/MsCobB played a regulatory role in various metabolic pathways and nucleic acid processes. After that, the quantitative mass spectrometric method was utilized and proved that the AMP-dependent synthetase, Citrate synthase, ATP-dependent specificity component of the Clp protease, and ATP-dependent DNA/RNA helicases were identified to be the substrates of MsKat. Overall, our study provided an important resource underlying the substrates and functions of the acetylation regulatory enzymes in mycobacteria. SIGNIFICANCE: In this study, we systematically analyzed the dynamic molecular changes in response to the MsKat/MsCobB overexpression in mycobacteria at proteome and lysine acetylation level by using a TMT-based quantitative proteomic approach. Pathways related with glycolysis, degradation of branched chain amino acids, phosphotransferase system were affected after disturbance of the two regulates enzymes involved in lysine acetylation. We also proved that AMP-dependent synthetase Clp protease, ATP-dependent DNA/RNA helicases and citrate synthase was the substrate of MsKat according to our proteomic data and biological validation. Together, our study underlined the substrates and functions of the acetylation regulatory enzymes in mycobacteria.

2.
Environ Sci Ecotechnol ; 20: 100414, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38606035

RESUMO

Developing an efficient photocatalytic system for hydrogen peroxide (H2O2) activation in Fenton-like processes holds significant promise for advancing water purification technologies. However, challenges such as high carrier recombination rates, limited active sites, and suboptimal H2O2 activation efficiency impede optimal performance. Here we show that single-iron-atom dispersed Bi2WO6 monolayers (SIAD-BWOM), designed through a facile hydrothermal approach, can offer abundant active sites for H2O2 activation. The SIAD-BWOM catalyst demonstrates superior photo-Fenton degradation capabilities, particularly for the persistent pesticide dinotefuran (DNF), showcasing its potential in addressing recalcitrant organic pollutants. We reveal that the incorporation of iron atoms in place of tungsten within the electron-rich [WO4]2- layers significantly facilitates electron transfer processes and boosts the Fe(II)/Fe(III) cycle efficiency. Complementary experimental investigations and theoretical analyses further elucidate how the atomically dispersed iron induces lattice strain in the Bi2WO6 monolayer, thereby modulating the d-band center of iron to improve H2O2 adsorption and activation. Our research provides a practical framework for developing advanced photo-Fenton catalysts, which can be used to treat emerging and refractory organic pollutants more effectively.

3.
J Adv Res ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609049

RESUMO

INTRODUCTION: Helicobacter pylori (H. pylori) infection has been associated with gastric carcinogenesis. However, the precise involvement of LRP8, the low-density lipoprotein receptor-related protein 8, in H. pylori pathogenesis and gastric cancer (GC) remains poorly understood. OBJECTIVES: To investigate the potential roles of LRP8 in H. pylori infection and gastric carcinogenesis. METHODS: Three-dimensional human-derived gastric organoids (hGO) and gastric cancer organoids (hGCO) were synthesized from the tissues obtained from human donors. In this work, multi-omics combined with in vivo and in vitro studies were conducted to investigate the potential involvement of LRP8 in H. pylori-induced GC. RESULTS: We found that H. pylori infection significantly upregulated the expression of LRP8 in human GC tissues, cells, organoids, and mouse gastric mucous. In particular, LRP8 exhibited a distinct enrichment in cancer stem cells (CSC). Functionally, silencing of LRP8 affected the formation and proliferation of tumor spheroids, while increased expression of LRP8 was associated with increased proliferation and stemness of GC cells and organoids. Mechanistically, LRP8 promotes the binding of E-cadherin to ß-catenin, thereby promoting nuclear translocation and transcriptional activity of ß-catenin. Furthermore, LRP8 interacts with the cytotoxin-associated gene A (CagA) to form the CagA/LRP8/ß-catenin complex. This complex further amplifies H. pylori-induced ß-catenin nuclear translocation, leading to increased transcription of inflammatory factors and CSC markers. Clinical analysis demonstrated that abnormal overexpression of LRP8 is correlated with a poor prognosis and resistance to 5-Fluorouracil in patients with GC. CONCLUSION: Our findings provide valuable information on the molecular intricacies of H. pylori-induced gastric carcinogenesis, offering potential therapeutic targets and prognostic markers for GC.

4.
Brain Res Bull ; 211: 110943, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38614408

RESUMO

BACKGROUND: Existing evidence suggests that the composition of the gut microbiota is associated with neuropathic pain (NP), but the mechanistic link is elusive. Peroxisome proliferator-activated receptor α (PPARα) has been shown to be a pharmacological target for the treatment of metabolic disorders, and its expression is also involved in inflammatory regulation. The aim of this study was to investigate the important modulatory effects of PPARα on gut microbiota and spinal cord metabolites in mice subjected to chronic constriction injury. METHODS: We analyzed fecal microbiota and spinal cord metabolic alterations in mice from the sham, CCI, GW7647 (PPARα agonist) and GW6471 (PPARα antagonist) groups by 16 S rRNA amplicon sequencing and untargeted metabolomics analysis. On this basis, the intestinal microbiota and metabolites that were significantly altered between treatment groups were analyzed in a combined multiomics analysis. We also investigated the effect of PPARα on the polarization fractionation of spinal microglia. RESULTS: PPARα agonist significantly reduce paw withdrawal threshold and paw withdrawal thermal latency, while PPARα antagonist significantly increase paw withdrawal threshold and paw withdrawal thermal latency. 16 S rRNA gene sequencing showed that intraperitoneal injection of GW7647 or GW6471 significantly altered the abundance, homogeneity and composition of the gut microbiome. Analysis of the spinal cord metabolome showed that the levels of spinal cord metabolites were shifted after exposure to GW7647 or GW6471. Alterations in the composition of gut microbiota were significantly associated with the abundance of various spinal cord metabolites. The abundance of Licheniformes showed a significant positive correlation with nicotinamide, benzimidazole, eicosanoids, and pyridine abundance. Immunofluorescence results showed that intraperitoneal injection of GW7647 or GW6471 altered microglial activation and polarization levels. CONCLUSION: Our study shows that PPARα can promote M2-type microglia polarization, as well as alter gut microbiota and metabolites in CCI mice. This study enhances our understanding of the mechanism of PPARα in the treatment of neuropathic pain.

5.
Cardiovasc Res ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626311

RESUMO

AIMS: Potential loss-of-function variants of ATP13A3, the gene encoding a P5B-type transport ATPase of undefined function, were recently identified in pulmonary arterial hypertension (PAH) patients. ATP13A3 is implicated in polyamine transport but its function has not been fully elucidated. Here, we sought to determine the biological function of ATP13A3 in vascular endothelial cells and how PAH-associated variants may contribute to disease pathogenesis. METHODS AND RESULTS: We studied the impact of ATP13A3 deficiency and overexpression in endothelial cell (EC) models (human pulmonary ECs, blood outgrowth ECs (BOECs) and HMEC-1 cells), including a PAH patient-derived BOEC line harbouring an ATP13A3 variant (LK726X). We also generated mice harbouring an Atp13a3 variant analogous to a human disease-associated variant to establish whether these mice develop PAH.ATP13A3 localised to the recycling endosomes of human ECs. Knockdown of ATP13A3 in ECs generally reduced the basal polyamine content and altered the expression of enzymes involved in polyamine metabolism. Conversely, overexpression of wild-type ATP13A3 increased polyamine uptake. Functionally, loss of ATP13A3 was associated with reduced EC proliferation, increased apoptosis in serum starvation and increased monolayer permeability to thrombin. Assessment of five PAH-associated missense ATP13A3 variants (L675V, M850I, V855M, R858H, L956P) confirmed loss-of-function phenotypes represented by impaired polyamine transport and dysregulated EC function. Furthermore, mice carrying a heterozygous germ-line Atp13a3 frameshift variant representing a human variant spontaneously developed a PAH phenotype, with increased pulmonary pressures, right ventricular remodelling and muscularisation of pulmonary vessels. CONCLUSION: We identify ATP13A3 as a polyamine transporter controlling polyamine homeostasis in ECs, deficiency of which leads to EC dysfunction and predisposes to PAH. This suggests a need for targeted therapies to alleviate the imbalances in polyamine homeostasis and EC dysfunction in PAH.

6.
New Phytol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629267

RESUMO

Seminal roots play a critical role in water and nutrient absorption, particularly in the early developmental stages of wheat. However, the genes responsible for controlling SRN in wheat remain largely unknown. Genetic mapping and functional analyses identified a candidate gene (TraesCS3D01G137200, TaSRN-3D) encoding a Ser/Thr kinase glycogen synthase kinase 3 (STKc_GSK3) that regulated SRN in wheat. Additionally, experiments involving hormone treatment, nitrate absorption and protein interaction were conducted to explore the regulatory mechanism of TaSRN-3D. Results showed that the TaSRN-3D4332 allele inhibited seminal roots initiation and development, while loss-of-function mutants showed significantly higher seminal root number (SRN). Exogenous application of epi-brassinolide could increase the SRN in a HS2-allelic background. Furthermore, chlorate sensitivity and 15N uptake assays revealed that a higher number of seminal roots promoted nitrate accumulation. TaBSR1 (BIN2-related SRN Regulator 1, orthologous to OsGRF4/GL2 in rice) acts as an interactor of TaSRN-3D and promotes TaBSR1 degradation to reduce SRN. This study provides valuable insights into understanding the genetic basis and regulatory network of SRN in wheat, highlighting their roles as potential targets for root-based improvement in wheat breeding.

7.
Huan Jing Ke Xue ; 45(5): 2995-3004, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629560

RESUMO

The speciation of heavy metals in soil is an important factor determining their bioavailability and toxicity, and it is crucial for the scientific assessment of ecological risks posed by heavy metals in soils of typical carbonate areas with high geological background in southwest China. In order to investigate the distribution of speciation of heavy metals in soils of carbonate rock with high geological background, we selected a typical carbonate rock distribution area in Guizhou Province and used the second national soil survey plots as sampling units. A total of 309 topsoil samples were collected from farmland. The improved Tessier seven-step sequential extraction method was used to analyze the seven chemical forms of heavy metals:water-soluble (F1); exchangeable (F2); carbonate-bound (F3); weakly organic-bound (F4); iron-manganese oxide-bound (F5); strongly organic-bound (F6); and residual (F7) forms of arsenic (As), cadmium (Cd), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn). The study found that the residual forms of heavy metals As, Cu, Hg, Ni, Pb, and Zn in the soil accounted for more than 50%, the effective components (F1-F3) accounted for less than 5%, and the potential biological effective components (F4-F6) were less than 45%, indicating low reactivity and low ecological risk. The effective and potentially bioavailable components of Cd accounted for 55.49% and 29.37%, respectively, which were much higher than those of other heavy metals. The ecological risk based on the speciation of heavy metals in the soil was much lower than that based on the total content of heavy metals. The stepwise regression equations could effectively establish the relationship between the bioavailable and potentially bioavailable fractions of Cd, Cu, and Pb and their influencing factors. Total heavy metal contents and pH value were important factors influencing the speciation of heavy metals in soils of carbonate rock with high geological background areas. The enrichment of heavy metal elements in the residual fraction was influenced by long-term zinc smelting activities and the weathering of carbonate rocks into soil. Soil organic matter (OM) and oxide content had a relatively small influence on the speciation of heavy metals in the soil.

8.
Rice (N Y) ; 17(1): 27, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607544

RESUMO

Cultivating rice varieties with robust blast resistance is the most effective and economical way to manage the rice blast disease. However, rice blast disease comprises leaf and panicle blast, which are different in terms of resistance mechanisms. While many blast resistant rice cultivars were bred using genes conferring resistance to only leaf or panicle blast, mining durable and effective quantitative trait loci (QTLs) for both panicle and leaf blast resistance is of paramount importance. In this study, we conducted a pangenome-wide association study (panGWAS) on 9 blast resistance related phenotypes using 414 international diverse rice accessions from an international rice panel. This approach led to the identification of 74 QTLs associated with rice blast resistance. One notable locus, qPBR1, validated in a F4:5 population and fine-mapped in a Heterogeneous Inbred Family (HIF), exhibited broad-spectrum, major and durable blast resistance throughout the growth period. Furthermore, we performed transcriptomic analysis of 3 resistant and 3 sensitive accessions at different time points after infection, revealing 3,311 differentially expressed genes (DEGs) potentially involved in blast resistance. Integration of the above results identified 6 candidate genes within the qPBR1 locus, with no significant negative effect on yield. The results of this study provide valuable germplasm resources, QTLs, blast response genes and candidate functional genes for developing rice varieties with enduring and broad-spectrum blast resistance. The qPBR1, in particular, holds significant potential for breeding new rice varieties with comprehensive and durable resistance throughout their growth period.

9.
Sensors (Basel) ; 24(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38610237

RESUMO

Multispectral thermometry is based on the law of blackbody radiation and is widely used in engineering practice today. Temperature values can be inferred from radiation intensity and multiple sets of wavelengths. Multispectral thermometry eliminates the requirements for single-spectral and spectral similarity, which are associated with two-colour thermometry. In the process of multispectral temperature inversion, the solution of spectral emissivity and multispectral data processing can be seen as the keys to accurate thermometry. At present, spectral emissivity is most commonly estimated using assumption models. When an assumption model closely matches an actual situation, the inversion of the temperature and the accuracy of spectral emissivity are both very high; however, when the two are not closely matched, the inversion result is very different from the actual situation. Assumption models of spectral emissivity exhibit drawbacks when used for thermometry of a complex material, or any material whose properties dynamically change during a combustion process. To address the above problems, in the present study, we developed a multispectral thermometry method based on optimisation ideas. This method involves analysing connections between measured temperatures of each channel in a multispectral temperature inversion process; it also makes use of correlations between multispectral signals at different temperatures. In short, we established a multivariate temperature difference correlation function based on the principles of multispectral radiometric thermometry, using information correlations between data for each channel in a temperature inversion process. We then established a high-precision thermometry model by optimising the correlation function and correcting any measurement errors. This method simplifies the modelling process so that it becomes an optimisation problem of the temperature difference function. This also removes the need to assume the relationships between spectral emissivity and other physical quantities, simplifying the process of multispectral thermometry. Finally, this involves correction of the spectral data so that any impact of measurement error on the thermometry is reduced. In order to verify the feasibility and reliability of the method, a simple eight-channel multispectral thermometry device was used for experimental validation, in which the temperature emitted from a blackbody furnace was identified as the standard value. In addition, spectral data from the 468-603 nm band were calibrated within a temperature range of 1923.15-2273.15 K, resulting in multispectral thermometry based on optimisation principles with an error rate of around 0.3% and a temperature calculation time of less than 3 s. The achieved level of inversion accuracy was better than that obtained using either a secondary measurement method (SMM) or a neural network method, and the calculation speed achieved was considerably faster than that obtained using the SMM method.

10.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610340

RESUMO

In this study, an internal fingerprint-guided epidermal thickness of fingertip skin is proposed for optical image encryption based on optical coherence tomography (OCT) combined with U-Net architecture of a convolutional neural network (CNN). The epidermal thickness of fingertip skin is calculated by the distance between the upper and lower boundaries of the epidermal layer in cross-sectional optical coherence tomography (OCT) images, which is segmented using CNN, and the internal fingerprint at the epidermis-dermis junction (DEJ) is extracted based on the maximum intensity projection (MIP) algorithm. The experimental results indicate that the internal fingerprint-guided epidermal thickness is insensitive to pressure due to normal correlation coefficients and the encryption process between epidermal thickness maps of fingertip skin under different pressures. In addition, the result of the numerical simulation demonstrates the feasibility and security of the encryption scheme by structural similarity index matrix (SSIM) analysis between the original image and the recovered image with the correct and error keys decryption, respectively. The robustness is analyzed based on the SSIM value in three aspects: different pressures, noise attacks, and data loss. Key randomness is valid by the gray histograms, and the average correlation coefficients of adjacent pixelated values in three directions and the average entropy were calculated. This study suggests that the epidermal thickness of fingertip skin could be seen as important biometric information for information encryption.


Assuntos
Epiderme , Dedos , Estudos Transversais , Epiderme/diagnóstico por imagem , Dedos/diagnóstico por imagem , Algoritmos , Biometria
11.
Polymers (Basel) ; 16(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611231

RESUMO

In the micro-tube gas-assisted extrusion process, flow theories ignoring cross-scale viscoelastic variations fail to effectively characterize the rheological state of the melt. To investigate the impact of cross-scale viscoelastic variation on the quality of the micro-tube gas-assisted extrusion, a 3D multiphase flow extrusion model incorporating a double gas-assisted layer was developed. Subsequently, we modified the DCPP constitutive equations based on the cross-scale factor model. Both the traditional and gas-assisted extrusions were simulated under macroscale and cross-scale models using the Ansys Polyflow. Finally, using the established gas-assisted extrusion platform, extrusion experiments were conducted. The results indicate that, owing to the reduced melt viscosity under the cross-scale model, the deformation behavior of the melt is more pronounced than in the macroscale model. The cross-scale model's numerical results more closely match the experimental outcomes under the same parameters, thereby confirming the feasibility of the theoretical analysis and numerical simulation. Moreover, the predictive capability of the cross-scale model for the micro-tube gas-assisted extrusion is further validated through numerical and experimental analyses with varying parameters. It is demonstrated that the cross-scale viscoelastic variation is a critical factor that cannot be overlooked in the gas-assisted extrusion.

12.
Anal Chem ; 96(15): 5931-5939, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38573171

RESUMO

Cuproptosis is a novel copper-dependent form of programmed cell death, displaying important regulatory functions in many human diseases, including cancer. However, the relationship between the changes in mitochondrial viscosity, a key factor associated with cellular malfunction, and cuproptosis is still unclear. Herein, we prepared a phosphorescent iridium (Ir) complex probe for precisely monitoring the changes of mitochondrial viscosity during cuprotosis via phosphorescence lifetime imaging. The Ir complex probe possessed microsecond lifetimes (up to 1 µs), which could be easily distinguished from cellular autofluorescence to improve the imaging contrast and sensitivity. Benefiting from the long phosphorescence lifetime, excellent viscosity selectivity, and mitochondrial targeting abilities, the Ir complex probe could monitor the increase in the mitochondrial viscosity during cuproptosis (from 46.8 to 68.9 cP) in a quantitative manner. Moreover, through in situ fluorescence imaging, the Ir complex probe successfully monitored the increase in viscosity in zebrafish treated with lipopolysaccharides or elescolomol-Cu2+, which were well-known cuproptosis inducers. We anticipate that this new Ir complex probe will be a useful tool for in-depth understanding of the biological effects of mitochondrial viscosity during cuproptosis.


Assuntos
Irídio , Peixe-Zebra , Animais , Humanos , Viscosidade , Peixe-Zebra/metabolismo , Linhagem Celular Tumoral , Células HeLa
13.
Int J Biol Macromol ; 267(Pt 1): 131361, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574902

RESUMO

The survival rate of flap is a crucial factor for determining the success of tissue repair and reconstruction. Flap transplantation surgery often leads to ischemic and reperfusion injury, causing apoptosis and tissue necrosis, which significantly reduces the survival rate of flap. To address this issue, we developed a porcine skin decellularized matrix gel nanocomplex loaded with alprostadil (Alp) in Prussian blue nanoparticles (PB NPs) called Alp@PB-Gel. This gel not only maintained the cell affinity of the extracellular scaffold but also exhibited a high degree of plasticity. In vitro assays demonstrated that Alp@PB-Gel possessed antioxidant activity, scavenging ROS ability, and effectively promoted the angiogenesis and migration of human vascular endothelial cells (HUVECs) by stimulating the proliferation of vascular epithelial cells and fibroblasts. In vivo assays further confirmed that Alp@PB-Gel could effectively alleviate necrosis in the early and late stages after surgery, downregulate the levels of NLRP3 and CD68 to inhibit apoptosis and attenuate inflammation, while upregulate the levels of VEGF and CD31 to promote vascular tissue regeneration. Moreover, Alp@PB-Gel exhibited excellent cell affinity and biocompatibility, highlighting its potential for clinical application.

14.
J Am Chem Soc ; 146(15): 10889-10898, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38584517

RESUMO

Full-color luminophores have advanced applications in materials and engineering, but constructing color-tunable clusteroluminescence (CL) from nonconjugated polymers based on through-space interactions remains a huge challenge. Herein, we develop phosphine-capped nonconjugated polyesters exhibiting blue-to-red CL (400-700 nm) based on phosphine-initiated copolymerization of epoxides and cyclic anhydrides, especially P1-0.5TPP, which exhibits red CL (610 nm) with a high quantum yield of 32%. Experiments and theoretical calculations disclose that the phosphine-capped effect in polyesters brings about conformational changes and induces phosphine-ester clusters by through-space (n,π*) interactions. Moreover, CL colors and efficiencies can be easily tailored by types of phosphines, compositions and structures of polyesters, and concentration. Significantly, the role of polymer motions (group, segmental, and chain motions) on CL originating from microregions inside polyesters is revealed. Further, phosphine-capped nonconjugated polyesters are demonstrated to be nonconjugated dyes and fluorescent fibers and are also used for multicolor light-emitting diodes including white light. This work not only provides an engineering strategy based on the end-group effect to prepare full-color clusteroluminogens but also broadens the prospects for material applications.

15.
Eur J Med Res ; 29(1): 226, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610009

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are critical regulators in the progression of tumors. This experimental design aimed to explore the mechanism of circ-10720 in non-small cell lung cancer (NSCLC). METHODS: We used RT-qPCR to measure circ-10720 expression in clinical samples and analyzed its relationship with the clinicopathological characteristics of NSCLC patients. The expression levels of microRNA-1238 (miR-1238) and Zinc Finger E-box-binding Homeobox 2 (ZEB2) in clinical samples were detected by RT-qPCR. NSCLC cells were transfected with relevant plasmids or sequences. Circ-10720, miR-1238, and ZEB2 expressions in cells were analyzed via RT-qPCR or western blot. Cell proliferation, apoptosis, migration, and invasion were assessed with CCK-8, flow cytometry, and transwell assay, respectively. The protein expression of ZEB2 and epithelial-mesenchymal transition (EMT)-related markers (E-cadherin, Vimentin, N-cadherin) were detected via western blot. Xenograft assay was used to determine the effect of circ-10720 on NSCLC in vivo. Circ-10720 and ZEB2 expressions in tumors were detected using RT-qPCR or Western blot. Immunohistochemistry was used to evaluate E-cadherin and N-cadherin expression in tumors. Finally, the binding relationship between miR-1238 with circ-10720 or ZEB2 was verified by the bioinformatics website, dual luciferase reporter assay, RNA pull-down assay, and RIP assay. RESULTS: Circ-10720 was upregulated in NSCLC and correlated with TNM stage of NSCLC patients. MiR-1238 was lowly expressed but ZEB2 was highly expressed in NSCLC. Circ-10720 silencing suppressed the proliferation, metastasis, and EMT of NSCLC cells. Mechanically, circ-10720 was a competitive endogenous RNA (ceRNA) for miR-1238, and ZEB2 was a target of miR-1238. circ-10720-modulated ZEB2 via competitively binding with miR-1238 to control NSCLC progression. In addition, circ-10720 knockdown suppressed tumor growth in vivo. CONCLUSIONS: Circ-10720 acts as a ceRNA to adsorb miR-1238 and modulate ZEB2 to facilitate the proliferation, migration, invasion, and EMT of NSCLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Caderinas , Carcinoma Pulmonar de Células não Pequenas/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , 60414 , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , RNA Circular
16.
Pest Manag Sci ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578650

RESUMO

BACKGROUND: Bacillus, as a plant-growth-promoting rhizobacteria, can enhance the resistance of plants to phytopathogens. So, in our study, the excellent biocontrol Bacillus strains were screened and used to control ginkgo leaf blight (Alternaria tenuissima). RESULTS: Four biocontrol Bacillus strains-Bsa537, Bam337, Bso544, and Bsu503-were selected from 286 isolates based on their capacity to inhibit pathogens and promote plant growth. They significantly improved the resistance of ginkgo to leaf blight, especially the mixture of four Bacillus strains, which contributed to the decrease in lesion areas by more than 40%. Hence, a mixture of Bacillus strains was used to control ginkgo leaf blight in the field. Treatment efficiency varied from 30% to 100% (average 81.5%) and was higher than that of the control (from -2% to -18%, average - 8.5%), the antioxidant capacity of the treated ginkgo was also stronger. Additionally, ginkgo biomass rose as a result of treatment with the Bacillus mixture, including leaf weight, area, thickness, number of lateral roots, and root weight. Furthermore, the Bacillus mixture improved the ginkgo rhizosphere soil by boosting the number of beneficial microorganisms, lowering the number of pathogens, and quickening soil catabolism. BACKGROUND: The Bacillus mixture improved the health status of ginkgo by protecting it from pathogen attack, promoting its growth, improving microorganism community in rhizosphere. This work closes a technological gap in biological control of ginkgo leaf blight, investigates the application methods of compound Bacillus biofertilizers, and establishes a framework for the population and commercialization of these products. This article is protected by copyright. All rights reserved.

17.
Food Funct ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563411

RESUMO

Fucoxanthin, a carotenoid exclusively derived from algae, exerts its bioactivities with the modulation of the gut microbiota in mice. However, mechanisms through which fucoxanthin regulates the gut microbiota and its derived metabolites/metabolism in humans remain unclear. In this study, we investigated the effects of fucoxanthin on the gut microbiota and metabolism of non-obese individuals using an in vitro simulated digestion-fermentation cascade model. The results showed that about half of the fucoxanthin was not absorbed in the intestine, thus reaching the colon. The gut microbiota from fecal samples underwent significant changes after 48 or 72 hours in vitro fermentation. Specifically, fucoxanthin significantly enhanced the relative abundance of Bacteroidota and Parabacteroides, leading to improved functions of the gut microbiota in its development, glycan biosynthesis and metabolism as well as in improving the digestive system, endocrine system and immune system. The recovery of fucoxanthin during fermentation showed a decreasing trend with the slight bio-conversion of fucoxanthinol. Notably, fucoxanthin supplementation significantly altered metabolites, especially bile acids and indoles in the simulated human gut ecosystem. Correlation analysis indicated the involvement of the gut microbiota in the manipulation of these metabolites by fucoxanthin. Moreover, all these altered metabolites revealed the improvement in the capacity of fucoxanthin in manipulating gut metabolism, especially lipid metabolism. Overall, fucoxanthin determinedly reshaped the gut microbiota and metabolism, implying its potential health benefits in non-obese individuals.

18.
Opt Express ; 32(6): 10317-10328, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571247

RESUMO

Optical feedback interferometry (OFI) exhibits good potential in laboratory and engineering applications as an interferometric measurement technology with unique structure. One challenge of this technology is that the OFI signals may be feeble, and the OFI fringe visibility is low when the optical feedback strength is weak. It has been demonstrated that the OFI fringe amplitude can be enhanced by introducing an extra-feedback into an OFI system. At the same time, it has been confirmed that the position of the extra-feedback target must be strictly controlled as it will directly affect the fringe amplitude. However, the details of how the extra-feedback positions affect the OFI fringe amplitude, and its underpinning mechanism still needs to be unveiled. In this paper, we aim to theoretically investigate the influence of the extra-feedback target position on the OFI fringe amplitude and explore the underpinning mechanism. Firstly, a simplified analytical model for characterizing a dual-channel optical feedback interferometry (DOFI) system in steady state was derived from the Lang-Kobayashi equations. A method of solving the analytical model was developed to further explore the nature of a DOFI system. On top of that, the influence of the extra-feedback target position on the OFI fringe amplitude and its underpinning mechanism was explored, based on which the criteria for how to achieve large fringe amplitudes were summarized. The obtained results provide helpful guidance in constructing a DOFI system with enhanced fringe visibility, and further promote the practical applications of OFI technology.

19.
Front Aging Neurosci ; 16: 1364727, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560024

RESUMO

Background: Rapid eye movement sleep behavior disorder (RBD) is common in individuals with Parkinson's disease (PD). In spite of that, the precise mechanism underlying the pathophysiology of RBD among PD remains unclear. Objective: The aim of the present study was to analyze gray matter volumes (GMVs) as well as the changes of functional connectivity (FC) among PD patients with RBD (PD-RBD) by employing a combination of voxel-based morphometry (VBM) and FC methods. Methods: A total of 65 PD patients and 21 healthy control (HC) subjects were included in this study. VBM analyses were performed on all subjects. Subsequently, regions with significant different GMVs between PD patients with and without RBD (PD-nRBD) were selected for further analysis of FC. Correlations between altered GMVs and FC values with RBD scores were also investigated. Additionally, receiver operating characteristic (ROC) curves were employed for the evaluation of the predictive value of GMVs and FC in identifying RBD in PD. Results: PD-RBD patients exhibited lower GMVs in the left middle temporal gyrus (MTG) and bilateral cuneus. Furthermore, we observed higher FC between the left MTG and the right postcentral gyrus (PoCG), as well as lower FC between the bilateral cuneus (CUN) and the right middle frontal gyrus (MFG) among PD-RBD patients in contrast with PD-nRBD patients. Moreover, the GMVs of MTG (extending to the right PoCG) was positively correlated with RBD severity [as measured by REM Sleep Behavior Disorder Screening Questionnaire (RBDSQ) score]. Conversely, the FC value between the bilateral CUN and the right MTG in PD-RBD patients was negatively correlated with RBDSQ score. Conclusion: This study revealed the presence replace with GMV and FC changes among PD-RBD patients, which were closely linked to the severity of RBD symptoms. Furthermore, the combination of basic clinical characteristics, GMVs and FC values effectively predicted RBD for individuals with PD.

20.
Chemistry ; : e202400612, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566284

RESUMO

Saturated heterocycles are important class of structural scaffolds in small-molecule drugs, natural products, and synthetic intermediates. Here, we disclosed a metal free, mild, and scalable functionalization of saturated heterocycles using vinylarenes as a linchpin approach. Key to success of this transformation is the employing of simple and cheap benzophenone as a hydrogen atom transfer (HAT) catalyst. This operationally robust process was used for the making of diverse functionalized saturated heterocycles. Furthermore, aldehydes, alkane, and alcohol have been functionalized under the optimized conditions. The potential pharmaceutical utility of the procedure has also been demonstrated by late-stage functionalization of bioactive natural compounds and pharmaceutical molecules. Initial mechanism studies and control experiments were performed to elucidate the mechanism of the reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...